cs.AI updates on arXiv.org 09月23日
TS-P$^2$CL:突破医学时间序列分类难题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TS-P$^2$CL框架,利用预训练视觉模型进行医学时间序列分类,通过将一维生理信号转化为二维伪图像,实现跨模态学习,有效提升分类效果。

arXiv:2509.17802v1 Announce Type: cross Abstract: Medical time series (MedTS) classification is pivotal for intelligent healthcare, yet its efficacy is severely limited by poor cross-subject generation due to the profound cross-individual heterogeneity. Despite advances in architectural innovations and transfer learning techniques, current methods remain constrained by modality-specific inductive biases that limit their ability to learn universally invariant representations. To overcome this, we propose TS-P$^2$CL, a novel plug-and-play framework that leverages the universal pattern recognition capabilities of pre-trained vision models. We introduce a vision-guided paradigm that transforms 1D physiological signals into 2D pseudo-images, establishing a bridge to the visual domain. This transformation enables implicit access to rich semantic priors learned from natural images. Within this unified space, we employ a dual-contrastive learning strategy: intra-modal consistency enforces temporal coherence, while cross-modal alignment aligns time-series dynamics with visual semantics, thereby mitigating individual-specific biases and learning robust, domain-invariant features. Extensive experiments on six MedTS datasets demonstrate that TS-P$^2$CL consistently outperforms fourteen methods in both subject-dependent and subject-independent settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医学时间序列 预训练模型 跨模态学习 分类效果 人工智能
相关文章