cs.AI updates on arXiv.org 09月23日
LLM角色扮演对话质量评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过人类评估和自动评估,对比了大型语言模型(LLM)生成和人类撰写的多轮专业培训模拟对话,发现LLM生成响应质量在自然度、上下文维护和整体质量方面存在显著退化。

arXiv:2509.17694v1 Announce Type: cross Abstract: Evaluating large language models (LLMs) in long-form, knowledge-grounded role-play dialogues remains challenging. This study compares LLM-generated and human-authored responses in multi-turn professional training simulations through human evaluation ($N=38$) and automated LLM-as-a-judge assessment. Human evaluation revealed significant degradation in LLM-generated response quality across turns, particularly in naturalness, context maintenance and overall quality, while human-authored responses progressively improved. In line with this finding, participants also indicated a consistent preference for human-authored dialogue. These human judgements were validated by our automated LLM-as-a-judge evaluation, where Gemini 2.0 Flash achieved strong alignment with human evaluators on both zero-shot pairwise preference and stochastic 6-shot construct ratings, confirming the widening quality gap between LLM and human responses over time. Our work contributes a multi-turn benchmark exposing LLM degradation in knowledge-grounded role-play dialogues and provides a validated hybrid evaluation framework to guide the reliable integration of LLMs in training simulations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 角色扮演对话 质量评估 培训模拟 自动评估
相关文章