cs.AI updates on arXiv.org 09月23日
多语言共指消解新方法:基于解码器LLM的优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于解码器LLM的多语言共指消解方法,通过五种指令集对LLM进行任务建模,在三个LLM上进行评估,结果表明,经过指令调优的LLM可以超越现有的特定任务架构。

arXiv:2509.17505v1 Announce Type: cross Abstract: Coreference Resolution (CR) is a crucial yet challenging task in natural language understanding, often constrained by task-specific architectures and encoder-based language models that demand extensive training and lack adaptability. This study introduces the first multilingual CR methodology which leverages decoder-only LLMs to handle both overt and zero mentions. The article explores how to model the CR task for LLMs via five different instruction sets using a controlled inference method. The approach is evaluated across three LLMs; Llama 3.1, Gemma 2, and Mistral 0.3. The results indicate that LLMs, when instruction-tuned with a suitable instruction set, can surpass state-of-the-art task-specific architectures. Specifically, our best model, a fully fine-tuned Llama 3.1 for multilingual CR, outperforms the leading multilingual CR model (i.e., Corpipe 24 single stage variant) by 2 pp on average across all languages in the CorefUD v1.2 dataset collection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

共指消解 LLM 多语言 指令集 自然语言理解
相关文章