cs.AI updates on arXiv.org 09月23日
MapCoder-Lite:小型语言模型上的高效多智能体编码
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MapCoder-Lite,通过轻量级技术将单一7B模型升级为四个角色专业化的智能体,实现高效的多智能体编码。在xCodeEval、APPS和CodeContests上测试,MapCoder-Lite显著提升编码准确率,同时降低内存和生成时间。

arXiv:2509.17489v1 Announce Type: cross Abstract: Large language models (LLMs) have advanced code generation from single-function tasks to competitive-programming problems, but existing multi-agent solutions either rely on costly large-scale ($>$ 30B) models or collapse when downsized to small open-source models. We present MapCoder-Lite, which upgrades a single 7B model into four role-specialised agents-retriever, planner, coder, and debugger-using only rank-32, role-specific LoRA adapters ($<3\%$ extra parameters). Three lightweight techniques make this possible: (i) trajectory distillation from strong LLMs fixes format fragility in retrieval and debugging, (ii) supervisor-guided correction strengthens planning and coding agents, and (iii) agent-wise LoRA fine-tuning delivers memory-efficient specialisation. Comprehensive evaluation on xCodeEval, APPS, and CodeContests shows that MapCoder-Lite more than doubles xCodeEval accuracy (from $13.2\%$ to $28.3\%$), eliminates all format failures, and closes to within six points of a 32B baseline while cutting GPU memory and token-generation time by $4\times$. These results demonstrate that careful agent-wise fine-tuning unleashes high-quality multi-agent coding on a small language model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MapCoder-Lite 多智能体编码 小型语言模型 编码准确率 轻量级技术
相关文章