cs.AI updates on arXiv.org 09月23日
基于CLIP的UniDA方法提升跨域适应性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于CLIP的UniDA方法,通过识别目标域未知类别,实现无监督的标签空间对齐,并构建通用分类器,显著提升跨域适应性。

arXiv:2509.17452v1 Announce Type: cross Abstract: Universal domain adaptation (UniDA) transfers knowledge from a labeled source domain to an unlabeled target domain, where label spaces may differ and the target domain may contain private classes. Previous UniDA methods primarily focused on visual space alignment but often struggled with visual ambiguities due to content differences, which limited their robustness and generalizability. To overcome this, we introduce a novel approach that leverages the strong \textit{zero-shot capabilities} of recent vision-language foundation models (VLMs) like CLIP, concentrating solely on label space alignment to enhance adaptation stability. CLIP can generate task-specific classifiers based only on label names. However, adapting CLIP to UniDA is challenging because the label space is not fully known in advance. In this study, we first utilize generative vision-language models to identify unknown categories in the target domain. Noise and semantic ambiguities in the discovered labels -- such as those similar to source labels (e.g., synonyms, hypernyms, hyponyms) -- complicate label alignment. To address this, we propose a training-free label-space alignment method for UniDA (\ours). Our method aligns label spaces instead of visual spaces by filtering and refining noisy labels between the domains. We then construct a \textit{universal classifier} that integrates both shared knowledge and target-private class information, thereby improving generalizability under domain shifts. The results reveal that the proposed method considerably outperforms existing UniDA techniques across key DomainBed benchmarks, delivering an average improvement of \textcolor{blue}{+7.9\%}in H-score and \textcolor{blue}{+6.1\%} in H$^3$-score. Furthermore, incorporating self-training further enhances performance and achieves an additional (\textcolor{blue}{+1.6\%}) increment in both H- and H$^3$-scores.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

UniDA CLIP 跨域适应性 标签空间对齐 通用分类器
相关文章