cs.AI updates on arXiv.org 09月23日
神经网络输入不确定性安全性与风险控制
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文在Fazlyab的二次约束和半定规划框架基础上,通过集成条件价值风险和尾风险,对神经网络验证进行扩展,提高其在输入不确定性下的安全性。实验验证了该方法在控制系统和分类任务中的应用,展示了风险水平在保守性和对尾部事件容忍度之间的权衡。

arXiv:2509.17413v1 Announce Type: cross Abstract: Ensuring the safety of neural networks under input uncertainty is a fundamental challenge in safety-critical applications. This paper builds on and expands Fazlyab's quadratic-constraint (QC) and semidefinite-programming (SDP) framework for neural network verification to a distributionally robust and tail-risk-aware setting by integrating worst-case Conditional Value-at-Risk (WC-CVaR) over a moment-based ambiguity set with fixed mean and covariance. The resulting conditions remain SDP-checkable and explicitly account for tail risk. This integration broadens input-uncertainty geometry-covering ellipsoids, polytopes, and hyperplanes-and extends applicability to safety-critical domains where tail-event severity matters. Applications to closed-loop reachability of control systems and classification are demonstrated through numerical experiments, illustrating how the risk level $\varepsilon$ trades conservatism for tolerance to tail events-while preserving the computational structure of prior QC/SDP methods for neural network verification and robustness analysis.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络安全 输入不确定性 风险控制 半定规划 控制系统
相关文章