cs.AI updates on arXiv.org 09月23日
Transformer模型在图像描述中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种基于Transformer模型的图像描述方法,通过利用自注意力机制,有效解决传统RNN模型在处理长序列时的信息丢失问题,实现高效并行化训练和推理。

arXiv:2509.17365v1 Announce Type: cross Abstract: Automatic image captioning, a multifaceted task bridging computer vision and natural lan- guage processing, aims to generate descriptive textual content from visual input. While Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks have achieved significant advancements, they present limitations. The inherent sequential nature of RNNs leads to sluggish training and inference times. LSTMs further struggle with retaining information from earlier sequence elements when dealing with very long se- quences. This project presents a comprehensive guide to constructing and comprehending transformer models for image captioning. Transformers employ self-attention mechanisms, capturing both short- and long-range dependencies within the data. This facilitates efficient parallelization during both training and inference phases. We leverage the well-established Transformer architecture, recognized for its effectiveness in managing sequential data, and present a meticulous methodology. Utilizing the Flickr30k dataset, we conduct data pre- processing, construct a model architecture that integrates an EfficientNetB0 CNN for fea- ture extraction, and train the model with attention mechanisms incorporated. Our approach exemplifies the utilization of parallelization for efficient training and inference. You can find the project on GitHub.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 图像描述 自然语言处理 计算机视觉 CNN
相关文章