cs.AI updates on arXiv.org 09月23日
基础模型在脑科学中的应用与挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了生成预训练模型在脑科学中的应用,分析了其预测准确性与科学理解之间的关系,并强调了从预测到解释的挑战。

arXiv:2509.17280v1 Announce Type: cross Abstract: Generative pretraining (the "GPT" in ChatGPT) enables language models to learn from vast amounts of internet text without human supervision. This approach has driven breakthroughs across AI by allowing deep neural networks to learn from massive, unstructured datasets. We use the term foundation models to refer to large pretrained systems that can be adapted to a wide range of tasks within and across domains, and these models are increasingly applied beyond language to the brain sciences. These models achieve strong predictive accuracy, raising hopes that they might illuminate computational principles. But predictive success alone does not guarantee scientific understanding. Here, we outline how foundation models can be productively integrated into the brain sciences, highlighting both their promise and their limitations. The central challenge is to move from prediction to explanation: linking model computations to mechanisms underlying neural activity and cognition.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

基础模型 脑科学 预测解释
相关文章