cs.AI updates on arXiv.org 09月23日
MaskVCT:多因素可控的零样本语音转换模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MaskVCT,一种通过多个无分类器指导(CFGs)实现多因素可控的零样本语音转换(VC)模型。该模型整合多种条件,使用连续或量化语言特征,并可选性地使用音高轮廓,以平衡说话人身份、语言内容和韵律因素。

arXiv:2509.17143v1 Announce Type: cross Abstract: We introduce MaskVCT, a zero-shot voice conversion (VC) model that offers multi-factor controllability through multiple classifier-free guidances (CFGs). While previous VC models rely on a fixed conditioning scheme, MaskVCT integrates diverse conditions in a single model. To further enhance robustness and control, the model can leverage continuous or quantized linguistic features to enhance intellgibility and speaker similarity, and can use or omit pitch contour to control prosody. These choices allow users to seamlessly balance speaker identity, linguistic content, and prosodic factors in a zero-shot VC setting. Extensive experiments demonstrate that MaskVCT achieves the best target speaker and accent similarities while obtaining competitive word and character error rates compared to existing baselines. Audio samples are available at https://maskvct.github.io/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音转换 零样本学习 多因素控制
相关文章