cs.AI updates on arXiv.org 09月23日
BERT助力低资源语言情感分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过将BERT模型融入自然语言处理技术,提升了对库尔德语情感分析的研究。针对库尔德语资源匮乏、语言多样性高的问题,采用BERT模型提高了情感分析的准确性,为低资源语言情感分析树立新标杆。

arXiv:2509.16804v1 Announce Type: cross Abstract: This paper enhances the study of sentiment analysis for the Central Kurdish language by integrating the Bidirectional Encoder Representations from Transformers (BERT) into Natural Language Processing techniques. Kurdish is a low-resourced language, having a high level of linguistic diversity with minimal computational resources, making sentiment analysis somewhat challenging. Earlier, this was done using a traditional word embedding model, such as Word2Vec, but with the emergence of new language models, specifically BERT, there is hope for improvements. The better word embedding capabilities of BERT lend to this study, aiding in the capturing of the nuanced semantic pool and the contextual intricacies of the language under study, the Kurdish language, thus setting a new benchmark for sentiment analysis in low-resource languages.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BERT 情感分析 低资源语言 库尔德语 自然语言处理
相关文章