cs.AI updates on arXiv.org 09月23日 13:48
数学教材页面级问答中RAG与GraphRAG的比较研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究在数学教材页面级问答中,Retrieval-Augmented Generation (RAG) 与 GraphRAG 两种方法的优劣,并分析了使用LLM对检索结果进行重排序的效果。

arXiv:2509.16780v1 Announce Type: cross Abstract: Technology-enhanced learning environments often help students retrieve relevant learning content for questions arising during self-paced study. Large language models (LLMs) have emerged as novel aids for information retrieval during learning. While LLMs are effective for general-purpose question-answering, they typically lack alignment with the domain knowledge of specific course materials such as textbooks and slides. We investigate Retrieval-Augmented Generation (RAG) and GraphRAG, a knowledge graph-enhanced RAG approach, for page-level question answering in an undergraduate mathematics textbook. While RAG has been effective for retrieving discrete, contextually relevant passages, GraphRAG may excel in modeling interconnected concepts and hierarchical knowledge structures. We curate a dataset of 477 question-answer pairs, each tied to a distinct textbook page. We then compare the standard embedding-based RAG methods to GraphRAG for evaluating both retrieval accuracy-whether the correct page is retrieved-and generated answer quality via F1 scores. Our findings show that embedding-based RAG achieves higher retrieval accuracy and better F1 scores compared to GraphRAG, which tends to retrieve excessive and sometimes irrelevant content due to its entity-based structure. We also explored re-ranking the retrieved pages with LLM and observed mixed results, including performance drop and hallucinations when dealing with larger context windows. Overall, this study highlights both the promises and challenges of page-level retrieval systems in educational contexts, emphasizing the need for more refined retrieval methods to build reliable AI tutoring solutions in providing reference page numbers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Retrieval-Augmented Generation GraphRAG LLM 教育AI 页面级问答
相关文章