cs.AI updates on arXiv.org 09月23日 13:47
PCA-PR-Seq2Seq-Adam-LSTM混合框架提高停电预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种混合深度学习框架PCA-PR-Seq2Seq-Adam-LSTM,用于提高停电预测的准确性。通过整合主成分分析、泊松回归、序列到序列架构和Adam优化的LSTM,该框架在降低数据方差的同时,有效捕捉长期依赖关系。实验表明,该框架相较于现有方法,显著提升了停电预测的准确性和鲁棒性。

arXiv:2509.16743v1 Announce Type: cross Abstract: Accurately forecasting power outages is a complex task influenced by diverse factors such as weather conditions [1], vegetation, wildlife, and load fluctuations. These factors introduce substantial variability and noise into outage data, making reliable prediction challenging. Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural Network (RNN), are particularly effective for modeling nonlinear and dynamic time-series data, with proven applications in stock price forecasting [2], energy demand prediction, demand response [3], and traffic flow management [4]. This paper introduces a hybrid deep learning framework, termed PCA-PR-Seq2Seq-Adam-LSTM, that integrates Principal Component Analysis (PCA), Poisson Regression (PR), a Sequence-to-Sequence (Seq2Seq) architecture, and an Adam-optimized LSTM. PCA is employed to reduce dimensionality and stabilize data variance, while Poisson Regression effectively models discrete outage events. The Seq2Seq-Adam-LSTM component enhances temporal feature learning through efficient gradient optimization and long-term dependency capture. The framework is evaluated using real-world outage records from Michigan, and results indicate that the proposed approach significantly improves forecasting accuracy and robustness compared to existing methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

停电预测 深度学习 PCA Seq2Seq LSTM
相关文章