cs.AI updates on arXiv.org 09月23日
地理空间模型预测城市地表温度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了利用地理空间基础模型预测城市地表温度,针对城市热岛效应,提出了一种基于无结构全球数据的模型,并探讨了其在不同气候情景下对地表温度的预测能力。

arXiv:2509.16617v1 Announce Type: cross Abstract: As urbanization and climate change progress, urban heat island effects are becoming more frequent and severe. To formulate effective mitigation plans, cities require detailed air temperature data. However, predictive analytics methods based on conventional machine learning models and limited data infrastructure often provide inaccurate predictions, especially in underserved areas. In this context, geospatial foundation models trained on unstructured global data demonstrate strong generalization and require minimal fine-tuning, offering an alternative for predictions where traditional approaches are limited. This study fine-tunes a geospatial foundation model to predict urban land surface temperatures under future climate scenarios and explores its response to land cover changes using simulated vegetation strategies. The fine-tuned model achieved pixel-wise downscaling errors below 1.74 {\deg}C and aligned with ground truth patterns, demonstrating an extrapolation capacity up to 3.62 {\deg}C.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

地理空间模型 城市热岛效应 地表温度预测
相关文章