cs.AI updates on arXiv.org 09月23日
CISIR:解决高不平衡回归问题的方法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CISIR方法,针对高不平衡回归问题,通过引入相关性、单调递减自反函数的重要性以及分层抽样技术,在五个数据集上实现了比一些近期方法更低的误差和更高的相关性。

arXiv:2509.16339v1 Announce Type: cross Abstract: We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

高不平衡回归 CISIR方法 相关性 重要性函数 分层抽样
相关文章