cs.AI updates on arXiv.org 09月23日
SubDyve:基于网络的虚拟筛选新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SubDyve,一种基于网络的虚拟筛选框架,通过构建子图感知相似网络和传播活性信号,有效识别生物活性化合物,尤其在低标签环境下表现出色。

arXiv:2509.16273v1 Announce Type: cross Abstract: Virtual screening (VS) aims to identify bioactive compounds from vast chemical libraries, but remains difficult in low-label regimes where only a few actives are known. Existing methods largely rely on general-purpose molecular fingerprints and overlook class-discriminative substructures critical to bioactivity. Moreover, they consider molecules independently, limiting effectiveness in low-label regimes. We introduce SubDyve, a network-based VS framework that constructs a subgraph-aware similarity network and propagates activity signals from a small known actives. When few active compounds are available, SubDyve performs iterative seed refinement, incrementally promoting new candidates based on local false discovery rate. This strategy expands the seed set with promising candidates while controlling false positives from topological bias and overexpansion. We evaluate SubDyve on ten DUD-E targets under zero-shot conditions and on the CDK7 target with a 10-million-compound ZINC dataset. SubDyve consistently outperforms existing fingerprint or embedding-based approaches, achieving margins of up to +34.0 on the BEDROC and +24.6 on the EF1% metric.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

虚拟筛选 网络分析 生物活性化合物
相关文章