cs.AI updates on arXiv.org 09月23日
AI突破复杂数学难题:语言模型新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于语言模型的新方法,利用零样本学习和数学推理解决复杂数学问题,如MIT、哥伦比亚大学课程和MATH数据集中的任务。通过程序综合,该方法降低了依赖大规模训练数据,将问题解决准确率提高至90.15%,显著超越之前81%的基准。

arXiv:2509.16241v1 Announce Type: cross Abstract: The challenges of solving complex university-level mathematics problems, particularly those from MIT, and Columbia University courses, and selected tasks from the MATH dataset, remain a significant obstacle in the field of artificial intelligence. Conventional methods have consistently fallen short in this domain, highlighting the need for more advanced approaches. In this paper, we introduce a language-based solution that leverages zero-shot learning and mathematical reasoning to effectively solve, explain, and generate solutions for these advanced math problems. By integrating program synthesis, our method reduces reliance on large-scale training data while significantly improving problem-solving accuracy. Our approach achieves an accuracy of 90.15%, representing a substantial improvement over the previous benchmark of 81% and setting a new standard in automated mathematical problem-solving. These findings highlight the significant potential of advanced AI methodologies to address and overcome the challenges presented by some of the most complex mathematical courses and datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 数学问题解决 语言模型 零样本学习 程序综合
相关文章