cs.AI updates on arXiv.org 09月23日
LLM辅助系统提升文献综述质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于多智能体系统的LLM辅助文献综述评估工具,旨在提高文献综述的自动化评估效率和质量。通过自动化协议验证、方法评估和主题相关性检查,该系统在多个领域进行了初步测试,与专家标注的PRISMA评分达成84%的一致性。

arXiv:2509.17240v1 Announce Type: new Abstract: Systematic Literature Reviews (SLRs) are foundational to evidence-based research but remain labor-intensive and prone to inconsistency across disciplines. We present an LLM-based SLR evaluation copilot built on a Multi-Agent System (MAS) architecture to assist researchers in assessing the overall quality of the systematic literature reviews. The system automates protocol validation, methodological assessment, and topic relevance checks using a scholarly database. Unlike conventional single-agent methods, our design integrates a specialized agentic approach aligned with PRISMA guidelines to support more structured and interpretable evaluations. We conducted an initial study on five published SLRs from diverse domains, comparing system outputs to expert-annotated PRISMA scores, and observed 84% agreement. While early results are promising, this work represents a first step toward scalable and accurate NLP-driven systems for interdisciplinary workflows and reveals their capacity for rigorous, domain-agnostic knowledge aggregation to streamline the review process.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文献综述 LLM 多智能体系统 PRISMA 自动化评估
相关文章