cs.AI updates on arXiv.org 09月23日
RALLM-POI:结合检索增强和自修正的POI推荐框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RALLM-POI框架,结合检索增强生成和自修正技术,有效解决LLM在POI推荐中的地理相关性问题,在Foursquare数据集上取得显著性能提升。

arXiv:2509.17066v1 Announce Type: new Abstract: Next point-of-interest (POI) recommendation predicts a user's next destination from historical movements. Traditional models require intensive training, while LLMs offer flexible and generalizable zero-shot solutions but often generate generic or geographically irrelevant results due to missing trajectory and spatial context. To address these issues, we propose RALLM-POI, a framework that couples LLMs with retrieval-augmented generation and self-rectification. We first propose a Historical Trajectory Retriever (HTR) that retrieves relevant past trajectories to serve as contextual references, which are then reranked by a Geographical Distance Reranker (GDR) for prioritizing spatially relevant trajectories. Lastly, an Agentic LLM Rectifier (ALR) is designed to refine outputs through self-reflection. Without additional training, RALLM-POI achieves substantial accuracy gains across three real-world Foursquare datasets, outperforming both conventional and LLM-based baselines. Code is released at https://github.com/LKRcrocodile/RALLM-POI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

POI推荐 LLM 检索增强 自修正 地理相关性
相关文章