cs.AI updates on arXiv.org 09月23日
FESTA:多模态大语言模型信任评估新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为FESTA的多模态大语言模型信任评估方法,通过功能等效采样生成不确定性度量,实现模型一致性和敏感性的探测,无需地面真实值,显著提升了模型预测的准确性。

arXiv:2509.16648v1 Announce Type: new Abstract: The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FESTA 信任评估 多模态大语言模型 不确定性度量 预测准确性
相关文章