cs.AI updates on arXiv.org 09月23日 13:15
LLM2LAS:基于故事问答的混合推理系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LLM2LAS,一种结合LLM、ILASP和ASP的混合系统,用于解决基于故事问答任务中的常识推理问题。LLM用于提取文本语义结构,ILASP将其转换为可解释的逻辑规则,ASP则进行精确推理,以实现正确回答未见问题。

arXiv:2509.16590v1 Announce Type: new Abstract: Large Language Models (LLMs) excel at understanding natural language but struggle with explicit commonsense reasoning. A recent trend of research suggests that the combination of LLM with robust symbolic reasoning systems can overcome this problem on story-based question answering tasks. In this setting, existing approaches typically depend on human expertise to manually craft the symbolic component. We argue, however, that this component can also be automatically learned from examples. In this work, we introduce LLM2LAS, a hybrid system that effectively combines the natural language understanding capabilities of LLMs, the rule induction power of the Learning from Answer Sets (LAS) system ILASP, and the formal reasoning strengths of Answer Set Programming (ASP). LLMs are used to extract semantic structures from text, which ILASP then transforms into interpretable logic rules. These rules allow an ASP solver to perform precise and consistent reasoning, enabling correct answers to previously unseen questions. Empirical results outline the strengths and weaknesses of our automatic approach for learning and reasoning in a story-based question answering benchmark.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 常识推理 故事问答 混合系统 ASP
相关文章