cs.AI updates on arXiv.org 09月23日 13:13
智能SPC预测:预防制造故障
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于机器学习的智能SPC方法,利用Facebook Prophet预测未来问题,提升生产过程稳定性。

arXiv:2509.16431v1 Announce Type: new Abstract: In the manufacturing industry, it is very important to keep machines and processes running smoothly and without unexpected problems. One of the most common tools used to check if everything is working properly is called Statistical Process Control (SPC). Traditional SPC methods work by checking whether recent measurements are within acceptable limits. However, they only react after a problem has already occurred. This can lead to wasted materials, machine downtime, and increased costs. In this paper, we present a smarter way to use SPC. Instead of just reacting to issues after they happen, our system can predict future problems before they occur. We use a machine learning tool called Facebook Prophet, which is designed to work with time-series data (data that changes over time). Prophet looks at past data and forecasts what the next value will be. Then, we use SPC rules to decide if the predicted value is in a Safe zone (no problem), a Warning zone (needs attention), or a Critical zone (may require shutting down the process). We applied this system to real data from a semiconductor manufacturing company. One of the challenges with this data is that the measurements are not taken at regular time intervals. This makes it harder to predict future values accurately. Despite this, our model was able to make strong predictions and correctly classify the risk level of future measurements. The main benefit of our system is that it gives engineers and technicians a chance to act early - before something goes wrong. This helps reduce unexpected failures and improves the overall stability and reliability of the production process. By combining machine learning with traditional SPC, we make quality control more proactive, accurate, and useful for modern industry.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SPC 机器学习 生产过程 故障预测 半导体制造
相关文章