cs.AI updates on arXiv.org 09月23日 13:11
模糊图分析冠心病风险预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过构建模糊冠心病图,利用模糊子图连通性(FSC)评估其连通性,识别最强诊断途径、主要风险因素和关键桥梁,为冠心病风险预测提供可解释且稳健的框架。

arXiv:2509.16288v1 Announce Type: new Abstract: Coronary heart disease (CHD) arises from complex interactions among uncontrollable factors, controllable lifestyle factors, and clinical indicators, where relationships are often uncertain. Fuzzy subgraph connectivity (FSC) provides a systematic tool to capture such imprecision by quantifying the strength of association between vertices and subgraphs in fuzzy graphs. In this work, a fuzzy CHD graph is constructed with vertices for uncontrollable, controllable, and indicator components, and edges weighted by fuzzy memberships. Using FSC, we evaluate connectivity to identify strongest diagnostic routes, dominant risk factors, and critical bridges. Results show that FSC highlights influential pathways, bounds connectivity between weakest and strongest correlations, and reveals critical edges whose removal reduces predictive strength. Thus, FSC offers an interpretable and robust framework for modeling uncertainty in CHD risk prediction and supporting clinical decision-making.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

冠心病 风险预测 模糊图 连通性 临床决策
相关文章