cs.AI updates on arXiv.org 09月22日
FRAME:基于语义丰富的大语言模型摘要方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FRAME,将摘要视为语义丰富任务,通过提取、评分和主题组织显著事实,结合SCOPE协议和P-MESA评估框架,实现更精确、个性化的摘要。

arXiv:2509.15901v1 Announce Type: cross Abstract: Meeting summarization with large language models (LLMs) remains error-prone, often producing outputs with hallucinations, omissions, and irrelevancies. We present FRAME, a modular pipeline that reframes summarization as a semantic enrichment task. FRAME extracts and scores salient facts, organizes them thematically, and uses these to enrich an outline into an abstractive summary. To personalize summaries, we introduce SCOPE, a reason-out-loud protocol that has the model build a reasoning trace by answering nine questions before content selection. For evaluation, we propose P-MESA, a multi-dimensional, reference-free evaluation framework to assess if a summary fits a target reader. P-MESA reliably identifies error instances, achieving >= 89% balanced accuracy against human annotations and strongly aligns with human severity ratings (r >= 0.70). On QMSum and FAME, FRAME reduces hallucination and omission by 2 out of 5 points (measured with MESA), while SCOPE improves knowledge fit and goal alignment over prompt-only baselines. Our findings advocate for rethinking summarization to improve control, faithfulness, and personalization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 摘要方法 语义丰富 个性化摘要 评估框架
相关文章