cs.AI updates on arXiv.org 09月22日
结构化学习与模型控制结合的动态环境控制框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合策略决策和低级执行的分层框架,通过强化学习和模型预测控制实现动态、约束丰富的环境中的安全协调行为。在捕食者-猎物基准测试中,该框架在奖励、安全性和一致性方面优于端到端和屏蔽式强化学习基准。

arXiv:2509.15799v1 Announce Type: cross Abstract: Achieving safe and coordinated behavior in dynamic, constraint-rich environments remains a major challenge for learning-based control. Pure end-to-end learning often suffers from poor sample efficiency and limited reliability, while model-based methods depend on predefined references and struggle to generalize. We propose a hierarchical framework that combines tactical decision-making via reinforcement learning (RL) with low-level execution through Model Predictive Control (MPC). For the case of multi-agent systems this means that high-level policies select abstract targets from structured regions of interest (ROIs), while MPC ensures dynamically feasible and safe motion. Tested on a predator-prey benchmark, our approach outperforms end-to-end and shielding-based RL baselines in terms of reward, safety, and consistency, underscoring the benefits of combining structured learning with model-based control.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 模型预测控制 动态环境控制 多智能体系统 安全协调行为
相关文章