cs.AI updates on arXiv.org 09月22日
机器学习公平性优化:理想分布导向
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种解决机器学习公平性问题的新方法,通过寻找理想分布来优化模型输出,确保公平性而不损害效用,并在合成和真实数据集上验证了其有效性。

arXiv:2509.15759v1 Announce Type: cross Abstract: To fix the 'bias in, bias out' problem in fair machine learning, it is important to steer feature distributions of data or internal representations of Large Language Models (LLMs) to ideal ones that guarantee group-fair outcomes. Previous work on fair generative models and representation steering could greatly benefit from provable fairness guarantees on the model output. We define a distribution as ideal if the minimizer of any cost-sensitive risk on it is guaranteed to have exact group-fair outcomes (e.g., demographic parity, equal opportunity)-in other words, it has no fairness-utility trade-off. We formulate an optimization program for optimal steering by finding the nearest ideal distribution in KL-divergence, and provide efficient algorithms for it when the underlying distributions come from well-known parametric families (e.g., normal, log-normal). Empirically, our optimal steering techniques on both synthetic and real-world datasets improve fairness without diminishing utility (and sometimes even improve utility). We demonstrate affine steering of LLM representations to reduce bias in multi-class classification, e.g., occupation prediction from a short biography in Bios dataset (De-Arteaga et al.). Furthermore, we steer internal representations of LLMs towards desired outputs so that it works equally well across different groups.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 公平性 理想分布 公平机器学习 模型优化
相关文章