cs.AI updates on arXiv.org 09月22日
CAGE网络:基于点云密度图的矢量平面重建
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CAGE的边缘感知网络,用于从点云密度图中直接重建矢量平面。该网络通过边缘中心化的方法,提高了重建的鲁棒性和几何细节的恢复能力,实验结果表明其在多个数据集上均取得了优异的性能。

arXiv:2509.15459v1 Announce Type: cross Abstract: We present \textbf{CAGE} (\textit{Continuity-Aware edGE}) network, a \textcolor{red}{robust} framework for reconstructing vector floorplans directly from point-cloud density maps. Traditional corner-based polygon representations are highly sensitive to noise and incomplete observations, often resulting in fragmented or implausible layouts. Recent line grouping methods leverage structural cues to improve robustness but still struggle to recover fine geometric details. To address these limitations, we propose a \textit{native} edge-centric formulation, modeling each wall segment as a directed, geometrically continuous edge. This representation enables inference of coherent floorplan structures, ensuring watertight, topologically valid room boundaries while improving robustness and reducing artifacts. Towards this design, we develop a dual-query transformer decoder that integrates perturbed and latent queries within a denoising framework, which not only stabilizes optimization but also accelerates convergence. Extensive experiments on Structured3D and SceneCAD show that \textbf{CAGE} achieves state-of-the-art performance, with F1 scores of 99.1\% (rooms), 91.7\% (corners), and 89.3\% (angles). The method also demonstrates strong cross-dataset generalization, underscoring the efficacy of our architectural innovations. Code and pretrained models will be released upon acceptance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CAGE网络 矢量平面重建 点云密度图 鲁棒性 几何细节
相关文章