Nvidia Developer 09月21日
NVIDIA简化CUDA部署,开发者更易于获取和使用GPU软件
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

NVIDIA正通过与Canonical、CIQ、SUSE及Flox等分发平台合作,简化CUDA软件栈在各种操作系统和包管理器上的部署。开发者现在可以直接从这些平台获取CUDA,嵌入到其包源中,从而简化安装和依赖管理,特别有利于PyTorch和OpenCV等复杂应用的GPU支持。此举扩展了CUDA的可访问性,并确保了命名一致性、及时更新、免费访问以及多样的支持选项,旨在降低GPU软件部署的复杂性,提升开发者体验。

📦 **扩展CUDA分发渠道,简化开发者获取流程**:NVIDIA正与Canonical、CIQ、SUSE及Flox等分发平台合作,允许它们直接分发CUDA。这意味着开发者可以将CUDA软件集成到其操作系统或包管理器的软件源中,无需单独下载和安装,极大地简化了CUDA的获取和部署过程,尤其是在复杂的企业级应用和开发环境中。

🔧 **确保版本一致性与及时更新,降低开发维护成本**:通过与分发平台合作,NVIDIA确保了第三方CUDA包将遵循NVIDIA的命名约定,避免混淆。同时,这些包将在NVIDIA官方发布后及时更新,以保证兼容性并减少开发者的质量保证(QA)开销。开发者可以确信他们使用的CUDA版本是最新的,并能与NVIDIA的最新驱动和硬件保持同步。

💰 **保持CUDA免费访问,降低使用门槛**:CUDA软件本身将继续免费提供,即使被打包进付费软件中。虽然分发平台可能会对其打包的服务或软件收取费用,但它们不会专门对CUDA本身进行货币化。这确保了所有开发者,无论其项目规模或预算如何,都能无障碍地利用CUDA的强大功能。

💡 **提升GPU应用开发效率,赋能开发者**:此次合作是NVIDIA降低GPU软件部署摩擦的重要一步。通过与操作系统和包管理领域的关键参与者协作,NVIDIA确保了CUDA在各种开发场景下的可访问性、一致性和易用性,从而使开发者能够更专注于创新和构建高性能的GPU加速应用,如深度学习框架和计算机视觉库。

Building and deploying applications can be challenging for developers, requiring them to navigate the complex relationship between hardware and software capabilities and compatibility. Ensuring that each underlying software component is not only installed correctly but also matches the required versions to avoid conflicts can be a time-consuming task, and often leads to deployment delays and operational inefficiencies in application workflows. 

That’s why NVIDIA is making it easier for developers to deploy the CUDA software stack across various operating systems (OS) and package managers.

The company is working with its ecosystem of distribution platforms to allow redistribution of CUDA. OS providers Canonical, CIQ, and SUSE, and developer environment manager Flox—which enables package manager Nix—will redistribute CUDA software directly. They can now embed CUDA into their package feeds, simplifying installation and dependency resolution. It’s particularly beneficial for incorporating GPU support into complex applications like PyTorch and libraries like OpenCV.

This effort expands CUDA access and ease of use for all developers. It augments the existing ways they have access by letting them obtain all the software they need in one location. Additional distributors are coming soon.

Key features for developers 

Each distribution platform that redistributes CUDA will provide a few key things to help developers and enterprises stay in sync with NVIDIA-distributed CUDA software. 

    Consistent CUDA Toolkit naming: Third-party packages will match NVIDIA naming conventions to avoid confusion in documentation and tutorials.Timely CUDA updates: Third-party packages will be updated in a timely manner after NVIDIA official releases to ensure compatibility and reduce QA overhead.Continued free access: CUDA itself will remain freely available—even when packaged in paid software. Distributors may charge for access to their packages or software but will not monetize CUDA specifically.Comprehensive support options: You can access support via distributors and can also find help via NVIDIA forums or NVIDIA’s developer site, just like always.

Impact on the developer ecosystem

Obtaining CUDA software from NVIDIA has always been free, and all the current avenues to get CUDA remain (they include downloading the CUDA Toolkit, pulling the CUDA container, installing for Python using pip or conda). 

But the ability for distribution platforms to package CUDA within larger enterprise deployments and software applications allows us to ensure your experience as a developer is simple. You download and install your application, and under the covers, the correct CUDA version is installed, as well. 

Looking ahead

Working with the NVIDIA ecosystem in this way is a significant milestone in our mission to reduce friction in GPU software deployment. By collaborating with key players across the OS and package management landscape, NVIDIA is ensuring that CUDA remains accessible, consistent, and easy to use—no matter where or how developers choose to build.

Stay tuned for more updates as additional third-party platforms are announced and the CUDA ecosystem continues to expand.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NVIDIA CUDA GPU 软件部署 开发者工具 NVIDIA CUDA GPU computing
相关文章