Nvidia Developer 09月21日
NVIDIA RTX PRO 6000 Blackwell GPU 加速蛋白质结构预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了NVIDIA最新发布的RTX PRO 6000 Blackwell Server Edition GPU在蛋白质结构预测领域的突破性进展。该GPU通过优化多序列比对(MSA)生成和GPU推理,显著提升了蛋白质结构预测的速度和效率,相较于AlphaFold2,在OpenFold上实现了更快的预测速度,且不牺牲准确性。文章强调了速度和规模在药物发现、酶工程和农业生物技术等领域的重要性,并详细阐述了NVIDIA如何通过MMseqs2-GPU、TensorRT等技术实现这一性能飞跃。此外,该GPU拥有96GB高带宽内存,支持多实例GPU(MIG)功能,能够满足大规模蛋白质分析的需求,为研究机构和软件平台提供了强大的计算能力。

🚀 **显著提升蛋白质结构预测性能:** NVIDIA RTX PRO 6000 Blackwell Server Edition GPU通过优化多序列比对(MSA)生成和GPU推理,实现了比AlphaFold2更快的蛋白质结构预测速度,同时保持了高精度。这得益于NVIDIA Digital Biology Research实验室的新加速技术,结合OpenFold,显著缩短了计算时间,降低了成本。

⚡ **加速生物技术关键应用:** 蛋白质结构预测的速度和规模对于药物发现、酶工程以及开发气候适应性作物至关重要。RTX PRO 6000 Blackwell GPU的强大性能能够处理大规模的蛋白质结构分析,加速研究迭代周期,为解决人类面临的生物学挑战提供关键支持。

💡 **消除内存瓶颈与提升资源利用率:** 该GPU配备96GB高带宽内存,能够容纳整个蛋白质集合和大型MSA,使整个工作流程保持在GPU上运行。其Multi-Instance GPU(MIG)功能允许一个GPU模拟成四个独立的GPU,支持多用户或多工作流共享服务器,而不会影响速度或准确性,提高了资源利用效率。

🛠️ **易于部署与集成:** 文章提供了部署OpenFold2 NIM(NVIDIA Inference Microservice)的详细步骤,包括Docker配置和Python脚本示例,展示了如何利用RTX PRO 6000 Blackwell GPU进行快速蛋白质结构预测。这使得蛋白质组规模的预测对任何实验室或软件平台都变得更加 accessible。

The race to understand protein structures has never been more critical. From accelerating drug discovery to preparing for future pandemics, the ability to predict how proteins fold determines the capacity to solve humanity’s most pressing biological challenges. Since the release of AlphaFold2, AI inference for determining protein structures has skyrocketed. Unoptimized tools for protein structure inference can cost organizations millions due to lost research time and prolonged compute utilization.

The new NVIDIA RTX PRO 6000 Blackwell Server Edition GPU fundamentally changes this. Despite the AlphaFold2 breakthrough, CPU-bound multiple sequence alignment (MSA) generation and inefficient GPU inference remained rate-limiting steps. Building on previous collaborative efforts, new accelerations developed by NVIDIA Digital Biology Research labs enable faster-than-ever protein structure inference using OpenFold at no accuracy cost compared to Alphafold2. 

In this post, we will show how to run large-scale protein analysis using RTX PRO 6000 Blackwell Server Edition GPUs, providing unprecedented protein structure inference performance to software platforms, cloud providers, and research institutions. 

Video 1. The NVIDIA RTX PRO 6000 Blackwell Server Edition GPU sets a new benchmark for protein structure inference

Why do speed and scale matter in protein structure prediction?

Protein folding sits at the intersection of the most computationally demanding workloads in computational biology. Modern drug discovery pipelines require analyzing thousands of protein structures. At the same time, enzyme engineering projects demand rapid iteration cycles to optimize biological functions, and agricultural biotech applications require screening massive protein libraries to develop climate-resilient crops.

The computational challenge can become immense: a single protein structure prediction can involve metagenomic-scale MSAs, iterative refinement steps, and ensemble calculations that typically require hours of compute time. When scaled across entire proteomes or drug target libraries, these workloads become prohibitively time-consuming on CPU-based infrastructures. 

For example, in a direct comparison of multiple-sequence alignment tools, MMseqs2‑GPU completed alignments 177x faster on a single L40S than CPU-based JackHMMER on a 128-core CPU and up to 720x faster when distributed across eight NVIDIA L40S GPUs. These speedups highlight how the GPU revolution dramatically alleviates computational bottlenecks in protein bioinformatics.

How does NVIDIA enable the fastest protein structure AI available?

Building on recent releases like cuEquivariance and the Boltz-2 NIM microservice, the NVIDIA Digital Biology Research lab validated groundbreaking performance improvements for OpenFold using RTX PRO 6000 Blackwell Server Edition and NVIDIA TensorRT across industry-standard benchmarks (Figure 1).

Figure 1. Protein structure prediction with MMseqs2-GPU and OpenFold2

Leveraging new instructions and TensorRT, MMseqs2-GPU, and OpenFold on RTX PRO 6000 Blackwell delivers transformational performance for protein structure prediction, executing folding over 138x faster than AlphaFold2 and approximately 2.8x faster than ColabFold, while maintaining identical TM-scores.

First, faster inference speed was enabled with MMseqs2-GPU on RTX PRO 6000 Blackwell, which runs approximately 190x faster than JackHMMER and HHBlits on a dual-socket AMD 7742 CPU. In addition, bespoke TensorRT optimizations targeting OpenFold increased its inference speed 2.3x compared to baseline OpenFold. Validated on 20 CASP14 protein targets, these benchmarks establish RTX PRO 6000 Blackwell as a breakthrough solution for end-to-end protein structure prediction.

Eliminate memory bottlenecks

In addition, the 96 GB of high-bandwidth memory (1.6 TB/s) enables RTX PRO 6000 Blackwell to fold entire protein ensembles and large MSAs, allowing the full workflow to remain GPU-resident. Its Multi-Instance GPU (MIG) functionality enables a single RTX PRO 6000 Blackwell to act like four GPUs, each powerful enough to outperform an NVIDIA L4 Tensor Core GPU. This allows multiple users or workflows to share a server without compromising speed or accuracy.

Here’s a complete example demonstrating how to leverage RTX Pro 6000’s performance for rapid protein structure prediction. The first step is deploying the OpenFold2 NIM on your local machine.

# See https://build.nvidia.com/openfold/openfold2/deploy for# instructions to configure your docker login, NGC API Key, and# environment for running the OpenFold NIM on your local system.# Run this in a shell, providing the username below and your NGC API Key$ docker login nvcr.ioUsername: $oauthtokenPassword: <PASTE_API_KEY_HERE>export NGC_API_KEY=<your personal NGC key># Configure local NIM cache directory so the NIM model download can be reusedexport LOCAL_NIM_CACHE=~/.cache/nimmkdir -p "$LOCAL_NIM_CACHE"sudo chmod 0777 -R "$LOCAL_NIM_CACHE"# Then launch the NIM container, in this case using GPU device ID 0.docker run -it \    --runtime=nvidia \    --gpus='"device=0"' \    -p 8000:8000 \    -e NGC_API_KEY \    -v "$LOCAL_NIM_CACHE":/opt/nim/.cache \    nvcr.io/nim/openfold/openfold2:latest# It can take some time to download all model assets on the initial run.# You can check the status using the built-in health check.  This will# return {"status": "ready"} when the NIM endpoint is ready for inference.curl http://localhost:8000/v1/health/ready

Once the NIM has been deployed locally, you can construct inference requests and use the local endpoint to generate protein structure predictions.

#!/usr/bin/env python3import requestsimport osimport jsonfrom pathlib import Path# ----------------------------# parameters# ----------------------------output_file = Path("output1.json")selected_models = [1, 2]# SARS-CoV-2 proteome example# Spike protein (1273 residues) — critical for vaccine developmentsequence = ("MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT")data = {    "sequence": sequence,    "selected_models": [1, 2],    "relax_prediction": False,}print(data)# ---------------------------------------------------------# Submit# ---------------------------------------------------------url = "http://localhost:8000/biology/openfold/openfold2/predict-structure-from-msa-and-template"print("Making request...")response = requests.post(url=url, json=data)# ---------------------------------------------------------# View response# ---------------------------------------------------------if response.status_code == 200:    output_file.write_text(response.text)    print(f"Response output to file: {output_file}")else:    print(f"Unexpected HTTP status: {response.status_code}")    print(f"Response: {response.text}")

Get started accelerating protein AI workflows

Whereas AlphaFold2 once required heterogeneous high-performance computing nodes, NVIDIA accelerations for protein structure prediction—including modular components in cuEquivariance, TensorRT, and MMseqs2-GPU—on RTX PRO 6000 Blackwell, enable folding on a single server at world-class speed. This makes proteome-scale folding accessible to any lab or software platform, with the fastest time-to-prediction to date.

Whether you’re developing software platforms for drug discovery, building agricultural biotech solutions, or conducting pandemic preparedness research, the unprecedented performance of RTX PRO 6000 Blackwell will transform your computational biology workflows. The power of RTX PRO 6000 Blackwell Server Edition is available today in NVIDIA RTX PRO Servers from global system makers as well as in cloud instances from leading cloud service providers.

Ready to get started? Find a partner for NVIDIA RTX PRO 6000 Blackwell Server Edition and experience protein folding at unprecedented speed and scale.

Acknowledgments

We’d like to thank the researchers from NVIDIA, University of Oxford, and Seoul National University who contributed to this research, including Christian Dallago, Alejandro Chacon, Kieran Didi, Prashant Sohani, Fabian Berressem, Alexander Nesterovskiy, Robert Ohannessian, Mohamed Elbalkini, Jonathan Cogan, Ania Kukushkina, Anthony Costa, Arash Vahdat, Bertil Schmidt, Milot Mirdita, and Martin Steinegger.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NVIDIA RTX PRO 6000 Blackwell 蛋白质结构预测 AI GPU加速 OpenFold AlphaFold2 生物信息学 药物发现 生物技术 NVIDIA
相关文章