cs.AI updates on arXiv.org 09月19日
隐私保护下LLM自学习去学习新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于自生成数据的隐私保护下大型语言模型去学习方法。针对传统方法获取忘却数据成本高、分布不匹配等问题,该方法通过优化指令引导模型揭示知识,并利用参数高效的模块迭代调整模型权重,实现去学习与效用保持之间的平衡。

arXiv:2509.14624v1 Announce Type: cross Abstract: Large language model (LLM) unlearning has demonstrated effectiveness in removing the influence of undesirable data (also known as forget data). Existing approaches typically assume full access to the forget dataset, overlooking two key challenges: (1) Forget data is often privacy-sensitive, rare, or legally regulated, making it expensive or impractical to obtain (2) The distribution of available forget data may not align with how that information is represented within the model. To address these limitations, we propose a ``Reveal-and-Release'' method to unlearn with self-generated data, where we prompt the model to reveal what it knows using optimized instructions. To fully utilize the self-generated forget data, we propose an iterative unlearning framework, where we make incremental adjustments to the model's weight space with parameter-efficient modules trained on the forget data. Experimental results demonstrate that our method balances the tradeoff between forget quality and utility preservation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM去学习 隐私保护 自生成数据 模型权重调整 效用保持
相关文章