cs.AI updates on arXiv.org 09月19日
LLM模仿个人写作风格能力评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了大型语言模型模仿个人写作风格的能力,通过分析不同领域和作者样本,发现模型在模仿正式写作方面表现较好,但在非正式写作方面存在局限。

arXiv:2509.14543v1 Announce Type: cross Abstract: As large language models (LLMs) become increasingly integrated into personal writing tools, a critical question arises: can LLMs faithfully imitate an individual's writing style from just a few examples? Personal style is often subtle and implicit, making it difficult to specify through prompts yet essential for user-aligned generation. This work presents a comprehensive evaluation of state-of-the-art LLMs' ability to mimic personal writing styles via in-context learning from a small number of user-authored samples. We introduce an ensemble of complementary metrics-including authorship attribution, authorship verification, style matching, and AI detection-to robustly assess style imitation. Our evaluation spans over 40000 generations per model across domains such as news, email, forums, and blogs, covering writing samples from more than 400 real-world authors. Results show that while LLMs can approximate user styles in structured formats like news and email, they struggle with nuanced, informal writing in blogs and forums. Further analysis on various prompting strategies such as number of demonstrations reveal key limitations in effective personalization. Our findings highlight a fundamental gap in personalized LLM adaptation and the need for improved techniques to support implicit, style-consistent generation. To aid future research and for reproducibility, we open-source our data and code.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 写作风格 模仿能力 评估 AI
相关文章