cs.AI updates on arXiv.org 09月19日
UDM模型:提升 stuttered speech检测的准确性与可解释性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了由加州大学伯克利分校开发的Unconstrained Dysfluency Modeling(UDM)系列模型,该模型在流畅性语音检测中实现了高准确率与临床可解释性的平衡,通过实验验证了其临床应用价值。

arXiv:2509.14304v1 Announce Type: cross Abstract: Stuttered and dysfluent speech detection systems have traditionally suffered from the trade-off between accuracy and clinical interpretability. While end-to-end deep learning models achieve high performance, their black-box nature limits clinical adoption. This paper looks at the Unconstrained Dysfluency Modeling (UDM) series-the current state-of-the-art framework developed by Berkeley that combines modular architecture, explicit phoneme alignment, and interpretable outputs for real-world clinical deployment. Through extensive experiments involving patients and certified speech-language pathologists (SLPs), we demonstrate that UDM achieves state-of-the-art performance (F1: 0.89+-0.04) while providing clinically meaningful interpretability scores (4.2/5.0). Our deployment study shows 87% clinician acceptance rate and 34% reduction in diagnostic time. The results provide strong evidence that UDM represents a practical pathway toward AI-assisted speech therapy in clinical environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

UDM模型 语音检测 临床可解释性 流畅性语音 AI辅助言语治疗
相关文章