cs.AI updates on arXiv.org 09月19日
EoK:基于LLM的RISC-V内核自动化设计框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为EoK的基于大型语言模型(LLM)的自动化内核设计框架,旨在解决RISC-V等新兴硬件平台在软件生态系统中的内核设计难题。通过挖掘和形式化现有内核库的优化思想,EoK实现了在参考材料稀缺的情况下,自动化设计内核的能力,并在实验中取得了显著的性能提升。

arXiv:2509.14265v1 Announce Type: cross Abstract: Automated kernel design is critical for overcoming software ecosystem barriers in emerging hardware platforms like RISC-V. While large language models (LLMs) have shown promise for automated kernel optimization, demonstrating success in CUDA domains with comprehensive technical documents and mature codebases, their effectiveness remains unproven for reference-scarce domains like RISC-V. We present Evolution of Kernels (EoK), a novel LLM-based evolutionary program search framework that automates kernel design for domains with limited reference material. EoK mitigates reference scarcity by mining and formalizing reusable optimization ideas (general design principles + actionable thoughts) from established kernel libraries' development histories; it then guides parallel LLM explorations using these ideas, enriched via Retrieval-Augmented Generation (RAG) with RISC-V-specific context, prioritizing historically effective techniques. Empirically, EoK achieves a median 1.27x speedup, surpassing human experts on all 80 evaluated kernel design tasks and improving upon prior LLM-based automated kernel design methods by 20%. These results underscore the viability of incorporating human experience into emerging domains and highlight the immense potential of LLM-based automated kernel optimization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM RISC-V 内核设计 自动化 优化
相关文章