cs.AI updates on arXiv.org 09月19日
语义共振架构:提高LLM可解释性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SRA的MoE模型,通过语义共振模块和散度损失,提高了LLM的可解释性和性能。

arXiv:2509.14255v1 Announce Type: cross Abstract: Large language models (LLMs) achieve remarkable performance but remain difficult to interpret. Mixture-of-Experts (MoE) models improve efficiency through sparse activation, yet typically rely on opaque, learned gating functions. While similarity-based routing (Cosine Routers) has been explored for training stabilization, its potential for inherent interpretability remains largely untapped. We introduce the Semantic Resonance Architecture (SRA), an MoE approach designed to ensure that routing decisions are inherently interpretable. SRA replaces learned gating with a Chamber of Semantic Resonance (CSR) module, which routes tokens based on cosine similarity with trainable semantic anchors. We also introduce a novel Dispersion Loss that encourages orthogonality among anchors to enforce diverse specialization. Experiments on WikiText-103 demonstrate that SRA achieves a validation perplexity of 13.41, outperforming both a dense baseline (14.13) and a Standard MoE baseline (13.53) under matched active parameter constraints (29.0M). Crucially, SRA exhibits superior expert utilization (1.0% dead experts vs. 14.8% in the Standard MoE) and develops distinct, semantically coherent specialization patterns, unlike the noisy specialization observed in standard MoEs. This work establishes semantic routing as a robust methodology for building more transparent and controllable language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MoE模型 LLM可解释性 语义路由
相关文章