cs.AI updates on arXiv.org 09月19日 12:24
AGI新范式:从模仿到认知架构发展
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新的AGI研究范式,强调从外部模仿转向认知架构的发展,定义了真正的智能系统,并提出一个五级分类法,为AGI研究提供明确的发展路径。

arXiv:2509.14474v1 Announce Type: new Abstract: The debate around Artificial General Intelligence (AGI) remains open due to two fundamentally different goals: replicating human-like performance versus replicating human-like cognitive processes. We argue that current performance-based definitions are inadequate because they provide no clear, mechanism-focused roadmap for research, and they fail to properly define the qualitative nature of genuine intelligence. Drawing inspiration from the human brain, we propose a new paradigm that shifts the focus from external mimicry to the development of foundational cognitive architectures. We define True Intelligence (TI) as a system characterized by six core components: embodied sensory fusion, core directives, dynamic schemata creation, a highly-interconnected multi-expert architecture, an orchestration layer, and lastly, the unmeasurable quality of Interconnectedness, which we hypothesize results in consciousness and a subjective experience. We propose a practical, five-level taxonomy of AGI based on the number of the first five measurable components a system exhibits. This framework provides a clear path forward with developmental milestones that directly address the challenge of building genuinely intelligent systems. We contend that once a system achieves Level-5 AGI by implementing all five measurable components, the difference between it and TI remains as a purely philosophical debate. For practical purposes - and given theories indicate consciousness is an emergent byproduct of integrated, higher-order cognition - we conclude that a fifth-level AGI is functionally and practically equivalent to TI. This work synthesizes diverse insights from analytical psychology, schema theory, metacognition, modern brain architectures and latest works in AI to provide the first holistic, mechanism-based definition of AGI that offers a clear and actionable path for the research community.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AGI 认知架构 智能系统 分类法 研究范式
相关文章