cs.AI updates on arXiv.org 09月19日
LLM驱动Web代理:模块化评估框架提升错误分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种模块化评估框架,针对LLM驱动的Web代理在动态网络环境中的错误分析进行改进,通过案例分析揭示标准指标未发现的弱点,助力构建更稳健、通用的Web代理。

arXiv:2509.14382v1 Announce Type: new Abstract: Web agents powered by large language models (LLMs) can autonomously perform complex, multistep tasks in dynamic web environments. However, current evaluations mostly focus on the overall success while overlooking intermediate errors. This limits insight into failure modes and hinders systematic improvement. This work analyzes existing benchmarks and highlights the lack of fine-grained diagnostic tools. To address this gap, we propose a modular evaluation framework that decomposes agent pipelines into interpretable stages for detailed error analysis. Using the SeeAct framework and the Mind2Web dataset as a case study, we show how this approach reveals actionable weaknesses missed by standard metrics - paving the way for more robust and generalizable web agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM Web代理 错误分析 模块化评估 网络环境
相关文章