MarkTechPost@AI 09月19日 09:17
生产级AI代理构建:数据管道、控制与可观测性是关键
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

生产级AI代理的成功并非依赖模型选择,而是取决于坚实的数据管道、精细的控制和全面的可观测性。本文阐述了“文档到聊天”(doc-to-chat)流水线的关键组成部分,包括数据摄取、标准化、治理、索引(关系型与向量)、以及通过API提供检索与生成能力,并强调了人类在环(HITL)检查点的重要性。文章深入探讨了如何与现有技术栈进行清晰集成,利用Iceberg和pgvector/Milvus等工具实现数据管理和向量搜索。同时,强调了代理、人类和工作流之间的明确协调,以及通过LLM护栏、PII检测、访问控制和检索质量门来强制执行可靠性。最后,文章指出,这些工程实践是构建安全、快速且可信赖AI代理的基础。

⚙️ **数据管道是AI代理的基石**:生产级AI代理的成败关键在于其数据处理能力,而非模型本身。一个完整的“文档到聊天”流水线需要高效的数据摄取、标准化、治理、索引(包括关系型和向量特征),以及通过API安全地提供检索和生成服务。这确保了代理能够处理企业文档,提供准确且合规的答案。

🔗 **无缝集成与技术选型**:为了与现有技术栈整合,建议使用标准服务边界(如REST/JSON, gRPC)并依赖组织信任的存储层。对于表格数据,Iceberg提供了ACID事务、模式演进和快照隔离等关键特性,支持可复现的检索和回填。对于向量数据,pgvector能够将嵌入与业务键和ACL标签共置于PostgreSQL中,实现SQL与向量相似性查询的结合;而Milvus则适用于大规模、高QPS的相似性搜索,具备独立的存储和计算能力。

🤝 **人类在环(HITL)与工作流协调**:生产环境下的AI代理需要明确的协调点,允许人类进行审批、纠正或升级。AWS A2I等工具提供了托管的HITL循环,而LangGraph等框架则将人类检查点作为代理图中的一等公民,确保审批流程成为DAG中的关键步骤,从而在发布摘要、提交工单或提交代码等操作前进行有效管控。

🛡️ **多层级可靠性保障**:在模型处理输入之前,需要建立多层防御机制来确保可靠性。这包括语言和内容护栏(如Bedrock Guardrails, NeMo Guardrails)、PII检测与 redaction、以及细粒度的访问控制和血缘追踪(如Unity Catalog),确保检索结果遵循权限。同时,通过Ragas等工具对RAG进行评估,设置检索质量门,阻止或降级低质量的上下文。

📈 **规模化索引与检索策略**:应对真实流量下的索引和检索规模化挑战,需要关注摄取吞吐量和查询并发性。通过在Lakehouse边缘进行数据归一化,并将数据写入Iceberg以获得版本化快照,然后异步嵌入,可以实现确定性重建和按时间点重新索引。Milvus的共享存储和分离式计算架构支持独立故障域的横向扩展。将业务连接保留在服务器端(如pgvector)可以避免N+1请求,并遵守策略。混合检索(BM25 + ANN + reranker)和将结构化特征与向量存储在一起,有助于在查询时支持过滤和重排。

Production-grade agents live or die on data plumbing, controls, and observability—not on model choice. The doc-to-chat pipeline below maps the concrete layers and why they matter.

What is a “doc-to-chat” pipeline?

A doc-to-chat pipeline ingests enterprise documents, standardizes them, enforces governance, indexes embeddings alongside relational features, and serves retrieval + generation behind authenticated APIs with human-in-the-loop (HITL) checkpoints. It’s the reference architecture for agentic Q&A, copilots, and workflow automation where answers must respect permissions and be audit-ready. Production implementations are variations of RAG (retrieval-augmented generation) hardened with LLM guardrails, governance, and OpenTelemetry-backed tracing.

How do you integrate cleanly with the existing stack?

Use standard service boundaries (REST/JSON, gRPC) over a storage layer your org already trusts. For tables, Iceberg gives ACID, schema evolution, partition evolution, and snapshots—critical for reproducible retrieval and backfills. For vectors, use a system that coexists with SQL filters: pgvector collocates embeddings with business keys and ACL tags in PostgreSQL; dedicated engines like Milvus handle high-QPS ANN with disaggregated storage/compute. In practice, many teams run both: SQL+pgvector for transactional joins and Milvus for heavy retrieval.

Key properties

How do agents, humans, and workflows coordinate on one “knowledge fabric”?

Production agents require explicit coordination points where humans approve, correct, or escalate. AWS A2I provides managed HITL loops (private workforces, flow definitions) and is a concrete blueprint for gating low-confidence outputs. Frameworks like LangGraph model these human checkpoints inside agent graphs so approvals are first-class steps in the DAG, not ad hoc callbacks. Use them to gate actions like publishing summaries, filing tickets, or committing code.

Pattern: LLM → confidence/guardrail checks → HITL gate → side-effects. Persist every artifact (prompt, retrieval set, decision) for auditability and future re-runs.

How is reliability enforced before anything reaches the model?

Treat reliability as layered defenses:

    Language + content guardrails: Pre-validate inputs/outputs for safety and policy. Options span managed (Bedrock Guardrails) and OSS (NeMo Guardrails, Guardrails AI; Llama Guard). Independent comparisons and a position paper catalog the trade-offs.PII detection/redaction: Run analyzers on both source docs and model I/O. Microsoft Presidio offers recognizers and masking, with explicit caveats to combine with additional controls.Access control and lineage: Enforce row-/column-level ACLs and audit across catalogs (Unity Catalog) so retrieval respects permissions; unify lineage and access policies across workspaces.Retrieval quality gates: Evaluate RAG with reference-free metrics (faithfulness, context precision/recall) using Ragas/related tooling; block or down-rank poor contexts.

How do you scale indexing and retrieval under real traffic?

Two axes matter: ingest throughput and query concurrency.

For structured+unstructured fusion, prefer hybrid retrieval (BM25 + ANN + reranker) and store structured features next to vectors to support filters and re-ranking features at query time.

How do you monitor beyond logs?

You need traces, metrics, and evaluations stitched together:

Add schema profiling/mapping on ingestion to keep observability attached to data shape changes (e.g., new templates, table evolution) and to explain retrieval regressions when upstream sources shift.

Example: doc-to-chat reference flow (signals and gates)

    Ingest: connectors → text extraction → normalization → Iceberg write (ACID, snapshots).Govern: PII scan (Presidio) → redact/mask → catalog registration with ACL policies.Index: embedding jobs → pgvector (policy-aware joins) and Milvus (high-QPS ANN).Serve: REST/gRPC → hybrid retrieval → guardrails → LLM → tool use.HITL: low-confidence paths route to A2I/LangGraph approval steps.Observe: OTEL traces to LangSmith/APM + scheduled RAG evaluations.

Why “5% AI, 100% software engineering” is accurate in practice?

Most outages and trust failures in agent systems are not model regressions; they’re data quality, permissioning, retrieval decay, or missing telemetry. The controls above—ACID tables, ACL catalogs, PII guardrails, hybrid retrieval, OTEL traces, and human gates—determine whether the same base model is safe, fast, and credibly correct for your users. Invest in these first; swap models later if needed.


References:

The post Building AI agents is 5% AI and 100% software engineering appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI代理 数据管道 可观测性 文档处理 RAG HITL Iceberg pgvector Milvus AI agents Data Pipeline Observability Document Processing RAG HITL Iceberg pgvector Milvus
相关文章