cs.AI updates on arXiv.org 09月18日
医疗领域LLM可靠性评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了在医疗领域应用大型语言模型(LLMs)的可靠性问题,分析了LLMs在真实临床环境中的信任度,并提出了相应的解决方案。

arXiv:2502.15871v2 Announce Type: replace-cross Abstract: The application of large language models (LLMs) in healthcare holds significant promise for enhancing clinical decision-making, medical research, and patient care. However, their integration into real-world clinical settings raises critical concerns around trustworthiness, particularly around dimensions of truthfulness, privacy, safety, robustness, fairness, and explainability. These dimensions are essential for ensuring that LLMs generate reliable, unbiased, and ethically sound outputs. While researchers have recently begun developing benchmarks and evaluation frameworks to assess LLM trustworthiness, the trustworthiness of LLMs in healthcare remains underexplored, lacking a systematic review that provides a comprehensive understanding and future insights. This survey addresses that gap by providing a comprehensive review of current methodologies and solutions aimed at mitigating risks across key trust dimensions. We analyze how each dimension affects the reliability and ethical deployment of healthcare LLMs, synthesize ongoing research efforts, and identify critical gaps in existing approaches. We also identify emerging challenges posed by evolving paradigms, such as multi-agent collaboration, multi-modal reasoning, and the development of small open-source medical models. Our goal is to guide future research toward more trustworthy, transparent, and clinically viable LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 医疗领域 可靠性评估 信任度 解决方案
相关文章