cs.AI updates on arXiv.org 09月18日
移动机器人任务规划:LTL-NL框架与HERACLEs方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于LTL-NL框架的移动机器人任务规划方法,设计出HERACLEs,一种层次化神经符号规划器,通过结合符号规划、预训练LLMs和符合预测技术,解决自然语言描述任务规划问题,实现任务成功率提升。

arXiv:2309.10092v5 Announce Type: replace-cross Abstract: This paper addresses planning problems for mobile robots. We consider missions that require accomplishing multiple high-level sub-tasks, expressed in natural language (NL), in a temporal and logical order. To formally define the mission, we treat these sub-tasks as atomic predicates in a Linear Temporal Logic (LTL) formula. We refer to this task specification framework as LTL-NL. Our goal is to design plans, defined as sequences of robot actions, accomplishing LTL-NL tasks. This action planning problem cannot be solved directly by existing LTL planners because of the NL nature of atomic predicates. To address it, we propose HERACLEs, a hierarchical neuro-symbolic planner that relies on a novel integration of (i) existing symbolic planners generating high-level task plans determining the order at which the NL sub-tasks should be accomplished; (ii) pre-trained Large Language Models (LLMs) to design sequences of robot actions based on these task plans; and (iii) conformal prediction acting as a formal interface between (i) and (ii) and managing uncertainties due to LLM imperfections. We show, both theoretically and empirically, that HERACLEs can achieve user-defined mission success rates. Finally, we provide comparative experiments demonstrating that HERACLEs outperforms LLM-based planners that require the mission to be defined solely using NL. Additionally, we present examples demonstrating that our approach enhances user-friendliness compared to conventional symbolic approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

移动机器人 任务规划 LTL-NL框架 HERACLEs LLMs
相关文章