cs.AI updates on arXiv.org 09月18日
MDMs理论框架与优化调度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一个系统性的理论框架,将掩码扩散模型(MDMs)视为离散最优传输中能量最小化问题的解决方案。通过证明三种不同的能量公式在MDMs结构下数学等价,并展示了在满足封闭形式最优条件时,MDMs最小化所有三种能量。该方法不仅阐明了MDMs的理论基础,还促进了采样方面的实际改进。

arXiv:2509.13866v1 Announce Type: cross Abstract: We present a systematic theoretical framework that interprets masked diffusion models (MDMs) as solutions to energy minimization problems in discrete optimal transport. Specifically, we prove that three distinct energy formulations--kinetic, conditional kinetic, and geodesic energy--are mathematically equivalent under the structure of MDMs, and that MDMs minimize all three when the mask schedule satisfies a closed-form optimality condition. This unification not only clarifies the theoretical foundations of MDMs, but also motivates practical improvements in sampling. By parameterizing interpolation schedules via Beta distributions, we reduce the schedule design space to a tractable 2D search, enabling efficient post-training tuning without model modification. Experiments on synthetic and real-world benchmarks demonstrate that our energy-inspired schedules outperform hand-crafted baselines, particularly in low-step sampling settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

掩码扩散模型 能量最小化 最优传输 采样优化
相关文章