cs.AI updates on arXiv.org 09月18日
跨机构NLP模型识别放疗事故报告
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种自然语言处理(NLP)筛查工具,用于检测辐射肿瘤学中的高严重程度事故报告,并成功开发跨机构NLP模型,在特定数据集上表现与人类相似。

arXiv:2509.13706v1 Announce Type: cross Abstract: PURPOSE: Incident reports are an important tool for safety and quality improvement in healthcare, but manual review is time-consuming and requires subject matter expertise. Here we present a natural language processing (NLP) screening tool to detect high-severity incident reports in radiation oncology across two institutions. METHODS AND MATERIALS: We used two text datasets to train and evaluate our NLP models: 7,094 reports from our institution (Inst.), and 571 from IAEA SAFRON (SF), all of which had severity scores labeled by clinical content experts. We trained and evaluated two types of models: baseline support vector machines (SVM) and BlueBERT which is a large language model pretrained on PubMed abstracts and hospitalized patient data. We assessed for generalizability of our model in two ways. First, we evaluated models trained using Inst.-train on SF-test. Second, we trained a BlueBERT_TRANSFER model that was first fine-tuned on Inst.-train then on SF-train before testing on SF-test set. To further analyze model performance, we also examined a subset of 59 reports from our Inst. dataset, which were manually edited for clarity. RESULTS Classification performance on the Inst. test achieved AUROC 0.82 using SVM and 0.81 using BlueBERT. Without cross-institution transfer learning, performance on the SF test was limited to an AUROC of 0.42 using SVM and 0.56 using BlueBERT. BlueBERT_TRANSFER, which was fine-tuned on both datasets, improved the performance on SF test to AUROC 0.78. Performance of SVM, and BlueBERT_TRANSFER models on the manually curated Inst. reports (AUROC 0.85 and 0.74) was similar to human performance (AUROC 0.81). CONCLUSION: In summary, we successfully developed cross-institution NLP models on incident report text from radiation oncology centers. These models were able to detect high-severity reports similarly to humans on a curated dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自然语言处理 辐射肿瘤学 事故报告 NLP模型 跨机构
相关文章