cs.AI updates on arXiv.org 09月18日
社交网络搜索:融合检索改进搜索质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于关键词检索与嵌入检索融合的Facebook群组搜索框架,通过语义检索提高搜索结果的相关性和多样性,并引入LLMs进行评估,验证了该方法显著提升用户参与度和搜索质量。

arXiv:2509.13603v1 Announce Type: cross Abstract: Beyond general web-scale search, social network search uniquely enables users to retrieve information and discover potential connections within their social context. We introduce a framework of modernized Facebook Group Scoped Search by blending traditional keyword-based retrieval with embedding-based retrieval (EBR) to improve the search relevance and diversity of search results. Our system integrates semantic retrieval into the existing keyword search pipeline, enabling users to discover more contextually relevant group posts. To rigorously assess the impact of this blended approach, we introduce a novel evaluation framework that leverages large language models (LLMs) to perform offline relevance assessments, providing scalable and consistent quality benchmarks. Our results demonstrate that the blended retrieval system significantly enhances user engagement and search quality, as validated by both online metrics and LLM-based evaluation. This work offers practical insights for deploying and evaluating advanced retrieval systems in large-scale, real-world social platforms.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

社交网络搜索 检索系统 语义检索 LLMs评估 搜索质量
相关文章