cs.AI updates on arXiv.org 09月18日 12:36
ColonCrafter:结肠镜检查中的3D场景理解新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ColonCrafter,一种基于扩散的深度估计模型,用于从单目结肠镜视频中生成时间一致的深度图,以解决结肠镜检查中的3D场景理解问题。该模型通过学习合成结肠镜序列中的鲁棒几何先验,并采用风格迁移技术,在C3VD数据集上实现了最先进的零样本性能。

arXiv:2509.13525v1 Announce Type: cross Abstract: Three-dimensional (3D) scene understanding in colonoscopy presents significant challenges that necessitate automated methods for accurate depth estimation. However, existing depth estimation models for endoscopy struggle with temporal consistency across video sequences, limiting their applicability for 3D reconstruction. We present ColonCrafter, a diffusion-based depth estimation model that generates temporally consistent depth maps from monocular colonoscopy videos. Our approach learns robust geometric priors from synthetic colonoscopy sequences to generate temporally consistent depth maps. We also introduce a style transfer technique that preserves geometric structure while adapting real clinical videos to match our synthetic training domain. ColonCrafter achieves state-of-the-art zero-shot performance on the C3VD dataset, outperforming both general-purpose and endoscopy-specific approaches. Although full trajectory 3D reconstruction remains a challenge, we demonstrate clinically relevant applications of ColonCrafter, including 3D point cloud generation and surface coverage assessment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

结肠镜检查 3D场景理解 深度估计 ColonCrafter C3VD数据集
相关文章