cs.AI updates on arXiv.org 09月18日
斐济纳迪土地利用变化监测研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文运用机器学习和遥感技术,对斐济纳迪2013至2024年间的土地利用和土地覆盖变化进行监测,旨在为土地利用/土地覆盖建模和变化检测提供技术支持。

arXiv:2509.13388v1 Announce Type: cross Abstract: As a developing country, Fiji is facing rapid urbanisation, which is visible in the massive development projects that include housing, roads, and civil works. In this study, we present machine learning and remote sensing frameworks to compare land use and land cover change from 2013 to 2024 in Nadi, Fiji. The ultimate goal of this study is to provide technical support in land cover/land use modelling and change detection. We used Landsat-8 satellite image for the study region and created our training dataset with labels for supervised machine learning. We used Google Earth Engine and unsupervised machine learning via k-means clustering to generate the land cover map. We used convolutional neural networks to classify the selected regions' land cover types. We present a visualisation of change detection, highlighting urban area changes over time to monitor changes in the map.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

土地利用变化 遥感技术 机器学习 斐济纳迪 变化检测
相关文章