cs.AI updates on arXiv.org 09月18日 12:32
生成AI写作中的归因问题探讨
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了生成AI在科学写作中的应用引发的归因和知识产权问题,分析了‘来源问题’及其对科学声誉和认知正义的威胁,并提出了维护学术交流诚信与公平的策略。

arXiv:2509.13365v1 Announce Type: cross Abstract: The increasing use of generative AI in scientific writing raises urgent questions about attribution and intellectual credit. When a researcher employs ChatGPT to draft a manuscript, the resulting text may echo ideas from sources the author has never encountered. If an AI system reproduces insights from, for example, an obscure 1975 paper without citation, does this constitute plagiarism? We argue that such cases exemplify the 'provenance problem': a systematic breakdown in the chain of scholarly credit. Unlike conventional plagiarism, this phenomenon does not involve intent to deceive (researchers may disclose AI use and act in good faith) yet still benefit from the uncredited intellectual contributions of others. This dynamic creates a novel category of attributional harm that current ethical and professional frameworks fail to address. As generative AI becomes embedded across disciplines, the risk that significant ideas will circulate without recognition threatens both the reputational economy of science and the demands of epistemic justice. This Perspective analyzes how AI challenges established norms of authorship, introduces conceptual tools for understanding the provenance problem, and proposes strategies to preserve integrity and fairness in scholarly communication.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生成AI 学术归因 知识产权 科学诚信 认知正义
相关文章