cs.AI updates on arXiv.org 09月18日
基于LLM的智能无人机框架研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于大型语言模型(LLM)的智能无人机框架,通过五层架构提升无人机在动态不确定任务中的适应能力,实现实时知识获取和自主决策。

arXiv:2509.13352v1 Announce Type: new Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly deployed in defense, surveillance, and disaster response, yet most systems remain confined to SAE Level 2--3 autonomy. Their reliance on rule-based control and narrow AI restricts adaptability in dynamic, uncertain missions. Existing UAV frameworks lack context-aware reasoning, autonomous decision-making, and ecosystem-level integration; critically, none leverage Large Language Model (LLM) agents with tool-calling for real-time knowledge access. This paper introduces the Agentic UAVs framework, a five-layer architecture (Perception, Reasoning, Action, Integration, Learning) that augments UAVs with LLM-driven reasoning, database querying, and third-party system interaction. A ROS2 and Gazebo-based prototype integrates YOLOv11 object detection with GPT-4 reasoning and local Gemma-3 deployment. In simulated search-and-rescue scenarios, agentic UAVs achieved higher detection confidence (0.79 vs. 0.72), improved person detection rates (91% vs. 75%), and markedly increased action recommendation (92% vs. 4.5%). These results confirm that modest computational overhead enables qualitatively new levels of autonomy and ecosystem integration.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

无人机 人工智能 大型语言模型 自主决策 生态系统集成
相关文章