cs.AI updates on arXiv.org 09月18日
LLM作为评委:思考型与非思考型模型比较
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过比较思考型与非思考型LLM在作为评委时的表现,揭示了思考型模型在准确率、效率及鲁棒性方面的优势。

arXiv:2509.13332v1 Announce Type: new Abstract: As Large Language Models (LLMs) are increasingly adopted as automated judges in benchmarking and reward modeling, ensuring their reliability, efficiency, and robustness has become critical. In this work, we present a systematic comparison of "thinking" and "non-thinking" LLMs in the LLM-as-a-judge paradigm using open-source Qwen 3 models of relatively small sizes (0.6B, 1.7B, and 4B parameters). We evaluate both accuracy and computational efficiency (FLOPs) on RewardBench tasks, and further examine augmentation strategies for non-thinking models, including in-context learning, rubric-guided judging, reference-based evaluation, and n-best aggregation. Our results show that despite these enhancements, non-thinking models generally fall short of their thinking counterparts. Our results show that thinking models achieve approximately 10% points higher accuracy with little overhead (under 2x), in contrast to augmentation strategies like few-shot learning, which deliver modest gains at a higher cost (>8x). Bias and robustness analyses further demonstrate that thinking models maintain significantly greater consistency under a variety of bias conditions such as positional, bandwagon, identity, diversity, and random biases (6% higher on average). We further extend our experiments to the multilingual setting and our results confirm that explicit reasoning extends its benefits beyond English. Overall, our work results in several important findings that provide systematic evidence that explicit reasoning offers clear advantages in the LLM-as-a-judge paradigm not only in accuracy and efficiency but also in robustness.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 评委 思考型模型 非思考型模型 准确率
相关文章