cs.AI updates on arXiv.org 09月17日
IPv6隐蔽通信检测:机器学习新策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了IPv6扩展头结构,通过模拟真实攻击场景,利用机器学习技术检测隐蔽通信,实现90%以上的检测精度,并探讨生成式AI在隐蔽通信检测中的应用。

arXiv:2501.10627v2 Announce Type: replace-cross Abstract: The flexibility and complexity of IPv6 extension headers allow attackers to create covert channels or bypass security mechanisms, leading to potential data breaches or system compromises. The mature development of machine learning has become the primary detection technology option used to mitigate covert communication threats. However, the complexity of detecting covert communication, evolving injection techniques, and scarcity of data make building machine-learning models challenging. In previous related research, machine learning has shown good performance in detecting covert communications, but oversimplified attack scenario assumptions cannot represent the complexity of modern covert technologies and make it easier for machine learning models to detect covert communications. To bridge this gap, in this study, we analyzed the packet structure and network traffic behavior of IPv6, used encryption algorithms, and performed covert communication injection without changing network packet behavior to get closer to real attack scenarios. In addition to analyzing and injecting methods for covert communications, this study also uses comprehensive machine learning techniques to train the model proposed in this study to detect threats, including traditional decision trees such as random forests and gradient boosting, as well as complex neural network architectures such as CNNs and LSTMs, to achieve detection accuracy of over 90\%. This study details the methods used for dataset augmentation and the comparative performance of the applied models, reinforcing insights into the adaptability and resilience of the machine learning application in IPv6 covert communication. We further introduce a Generative AI-driven script refinement framework, leveraging prompt engineering as a preliminary exploration of how generative agents can assist in covert communication detection and model enhancement.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

IPv6 隐蔽通信 机器学习 检测 生成式AI
相关文章