cs.AI updates on arXiv.org 09月17日
基于数字孪生的自适应性机器人异常行为检测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于数字孪生的自适应性机器人异常行为检测方法(ODiSAR),通过预测状态与重建误差结合,实现机器人行为异常检测,并在实际环境中验证了其有效性。

arXiv:2509.12982v1 Announce Type: cross Abstract: Self-adaptive robots (SARs) in complex, uncertain environments must proactively detect and address abnormal behaviors, including out-of-distribution (OOD) cases. To this end, digital twins offer a valuable solution for OOD detection. Thus, we present a digital twin-based approach for OOD detection (ODiSAR) in SARs. ODiSAR uses a Transformer-based digital twin to forecast SAR states and employs reconstruction error and Monte Carlo dropout for uncertainty quantification. By combining reconstruction error with predictive variance, the digital twin effectively detects OOD behaviors, even in previously unseen conditions. The digital twin also includes an explainability layer that links potential OOD to specific SAR states, offering insights for self-adaptation. We evaluated ODiSAR by creating digital twins of two industrial robots: one navigating an office environment, and another performing maritime ship navigation. In both cases, ODiSAR forecasts SAR behaviors (i.e., robot trajectories and vessel motion) and proactively detects OOD events. Our results showed that ODiSAR achieved high detection performance -- up to 98\% AUROC, 96\% TNR@TPR95, and 95\% F1-score -- while providing interpretable insights to support self-adaptation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数字孪生 自适应性机器人 异常行为检测 机器人轨迹预测 不确定性量化
相关文章