cs.AI updates on arXiv.org 09月17日
新型破解技术提升LLM安全性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为内容具体化(CC)的新型破解技术,通过迭代将抽象恶意请求转化为具体可执行实现,有效提升大型语言模型(LLM)的安全性。

arXiv:2509.12937v1 Announce Type: cross Abstract: Large Language Models (LLMs) are increasingly deployed for task automation and content generation, yet their safety mechanisms remain vulnerable to circumvention through different jailbreaking techniques. In this paper, we introduce \textit{Content Concretization} (CC), a novel jailbreaking technique that iteratively transforms abstract malicious requests into concrete, executable implementations. CC is a two-stage process: first, generating initial LLM responses using lower-tier, less constrained safety filters models, then refining them through higher-tier models that process both the preliminary output and original prompt. We evaluate our technique using 350 cybersecurity-specific prompts, demonstrating substantial improvements in jailbreak Success Rates (SRs), increasing from 7\% (no refinements) to 62\% after three refinement iterations, while maintaining a cost of 7.5\textcent~per prompt. Comparative A/B testing across nine different LLM evaluators confirms that outputs from additional refinement steps are consistently rated as more malicious and technically superior. Moreover, manual code analysis reveals that generated outputs execute with minimal modification, although optimal deployment typically requires target-specific fine-tuning. With eventual improved harmful code generation, these results highlight critical vulnerabilities in current LLM safety frameworks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 安全机制 破解技术
相关文章