cs.AI updates on arXiv.org 09月17日
图基方法提升SOC警报上下文分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于图的警报上下文分析方法,通过聚合警报形成图组,提升安全运营中心(SOC)对警报的识别和分析效率,并结合图匹配网络(GMNs)对历史事件进行关联分析,为分析师提供更多洞见。

arXiv:2509.12923v1 Announce Type: cross Abstract: Interpreting the massive volume of security alerts is a significant challenge in Security Operations Centres (SOCs). Effective contextualisation is important, enabling quick distinction between genuine threats and benign activity to prioritise what needs further analysis.This paper proposes a graph-based approach to enhance alert contextualisation in a SOC by aggregating alerts into graph-based alert groups, where nodes represent alerts and edges denote relationships within defined time-windows. By grouping related alerts, we enable analysis at a higher abstraction level, capturing attack steps more effectively than individual alerts. Furthermore, to show that our format is well suited for downstream machine learning methods, we employ Graph Matching Networks (GMNs) to correlate incoming alert groups with historical incidents, providing analysts with additional insights.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

安全运营中心 警报分析 图匹配网络
相关文章